Socio-Physical Interaction Skills for Cooperative Human-Robot Systems in Agile Production

SOPHIA Exploitable Results (final results, 31st May 2024)

T10.2: SOPHIA exploitable results – Overview (page 1/2)

ltem	Title	Lead	Status	Channel	TRL
A. Rob	ots / Cobots including Controls & Accessories				
<u>#1</u>	Mobile Collaborative Robot Assistant (MOCA)	IIT	completed	License to companies/spinoff	TRL7
<u>#2</u>	XbotCore Robot Control Framework	IIT	completed	License to companies/spinoff	TRL6
<u>#3</u>	Loco-manipulation & interaction control framework for mobile manipulators	IIT	completed	License to companies	TRL6
<u>#4</u>	MOCA-MAN interface	IIT	completed	License to companies	TRL7
<u>#5</u>	SoftHand X	UNIPI	completed	License and/or open source	TRL6
<u>#6</u>	SoftGlove	UNIPI	completed	License and/or open source	TRL6
<u>#7</u>	SoftHand Scaled Version	UNIPI	completed	License and/or open source	TRL5
<u>#8</u>	SuiHapTic (Sensorized Suit)	UNIPI	completed	License and/or open source	TRL5
<u>#9</u>	Control architecture for improved HRC	VUB	completed	Open-source software	TRL5
<u>#10</u>	Flexible screen for robot-to-human communication	VUB	completed	License to companies/spinoff	TRL7
<u>#11</u>	Visuo-haptic interface for connected and remote robot control	IIT	completed	License to companies/spinoff	TRL7
B. Wea	arbots / Exoskeletons				
<u>#12</u>	Exo-Muscle knee assistive device	IIT	completed	License to companies/spinoff	TRL5
<u>#13</u>	Elbow Assistive Device	IIT	completed	License to companies/spinoff	TRL5

TRL-definition according to: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

MAY 31st, 2024

T10.2: SOPHIA exploitable results – Overview (page 2/2)

Item	Title	Lead	Status	Channel	TRL
C. Hun	nan Modeling Software & Simulation				
<u>#14</u>	HRI30: An Action Recognition Dataset for Industrial HRI	IIT	completed	Open-source dataset	TRL4
<u>#15</u>	Open-VICO: An Open-Source Gazebo Toolkit for Skeleton Tracking	IIT	completed	Open-source software, API	TRL4
<u>#16</u>	Worker Capture System	UM	completed	Open-source software, API	TRL4
<u>#17</u>	Human action-activity Dataset	UM	completed	Open-source dataset	TRL4
<u>#18</u>	Enhanced HRC functions for ema simulation & Omniverse connector	IMK	completed	Commercial software (emaWD)	TRL8
<u>#19</u>	Real-time human musculoskeletal modelling	UT	completed	Commercial software license	TRL6
<u>#20</u>	Framework for Multi-Modal Physiological Sensing	VUB	completed	Open-source software	TRL5
<u>#21</u>	Antropo-social communication interface	VUB	completed	Open source software	TRL5
D. Met	thods, Tools & Standards				
<u>#22</u>	Instrumental-based tool for monitoring/classifying biomechanical risk	INAIL	completed	License, Consultancy services	TRL6
<u>#23</u>	Human Ergonomics Database	INAIL	completed	Open ac. database, Publication	TRL8
<u>#24</u>	Questionnaire to evaluate the dialog design of HRI systems	BAuA	completed	Open access publication	N/A
<u>#25</u>	Exoskeleton acceptance & suitability assessment	VUB	completed	Consultancy services	N/A
<u>#26</u>	Standardization document(s) on HRC and biomechanical assessment	DIN	completed	Publication of standard doc.	N/A

TRL-definition according to: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

MAY 31st, 2024

A. Robots / CoBots; Controls & Accessoires

T10.2: SOPHIA exploitable results #1 Mobile Collaborative Robot Assistant (MOCA)

Description/Contents:

MAY 31st, 2024

T10.2: SOPHIA exploitable results #2 XbotCore Robot Control Framework

Description/Contents:

- Light-weight, Real-Time (RT) software framework for EtherCAT-based robots that satisfies hard RT requirements, ensuring 1 kHz control loop even in complex Multi-Degree-Of-Freedom systems.
- Simple and easy-to-use middleware Application Programming Interface (API), for both RT and non-RT control frameworks.
- Flexible with respect to the framework a user wants to utilize.
- Reuse of the code using XBotCore API with different robots.

Background knowledge:

Lead partner: IIT

Involved partners: -

Work Package: WP8

• Early versions of XbotCore Robot Control Framework

EtherCAT Network

Current status & next steps:

External Software Framework

Communic

API

Plugin

EtherCAT

XENOMAI

XBotCore Model

- Final revision and evaluation
- Testing with SOPHIA platforms

5 Ö PHII

MAY 31st, 2024

IMK INDUSTRIAL INTELLIGENCE

Licensing to companies and/or spin-

Exploitation channel:

•

offs

TRL 6

6

Back to overview

#3 Loco-manipulation & interaction control framework for mobile manipulators

Description/Contents:

- A collaborative framework that allows Cobots to ensure safety requirements and human ergonomics, while simultaneously responding to multi-tasking scenarios.
- Hierarchical Quadratic Programming based control scheme allowing to formulate a strict hierarchy of tasks.
- Adaptive compliance control for improved human-robot collaboration.

Background knowledge:

- Humanoids and whole-body control
- Grasping and manipulation control

Back to overview

Current status & next steps:

 Validated and demonstrated in industrial lab and pilot line demonstrations

MAY 31st, 2024

Lead partner: IIT

Involved partners: -

Work Package: WP7

IMK INDUSTRIAL INTELLIGENCE

Exploitation channel:

•

TRL 6

Licensing to companies

7

T10.2: SOPHIA exploitable results #4 MOCA-MAN interface

Description/Contents:

- A novel interface to control mobile robots for conjoined actions (supernumerary body).
- Intuitive control
- Selective control of locomotion and manipulation.
- Active gravity compensation and force production.
- Adaptive impedance control at contact.

Background knowledge:

- Humanoids and whole-body control
- Grasping and manipulation control

Exploitation channel:

Licensing to companies

TRL 7

Current status & next steps:

- New interface designed and tested
- Interface validated and demonstrated in HKP use-case

MAY 31st, 2024

Lead partner: IIT

Involved partners: -

Work Package: WP7

T10.2: SOPHIA exploitable results #5 SoftHand X

- Two off-the-shelf gravity compensatory arm integrated with two Pisa/IIT SoftHand
- Custom braking system to lock a lifted object in any position in the arms workspace
- Improved controls to control the hands and the braking system

Background knowledge:

• Supernumerary Robotic limbs development for industrial worker assistance

Lead partner: UNIPIExploitation channel:
• Licensing to companies / spin-off
• Open source licensing in evaluationCurrent status & next steps:
• Prototype designed and tested in
several realistic environments
• Ongoing study on improving hardware
design

MAY 31st, 2024

MAY 31st, 2024

TRL 6

Exploitation channel:

IMK INDUSTRIAL INTELLIGENCE

- Licensing to companies / spin-offs •
- Open source licensing in evaluation

Current status & next steps:

- Prototype designed and tested in several realistic environments
- Ongoing study on reconstruction filter extension

T10.2: SOPHIA exploitable results #6 SoftGlove

Description/Contents:

- An IMU sensorized glove for posture reconstruction of ٠ anthropomorphic (human or robotic) hands
- 17 IMUs, 1 custom-made electronic board, quaternion-based ٠ complementary filtering for joint angle reconstruction
- Simple waterproofing of electronics for underwater and harsh ٠ environment tasks
- Reconstruction and visualization provided in ROS/rviz .

Background knowledge:

Posture reconstruction of soft robotic fingers and tree-like ٠ kinematic chains in ROS/rviz

Lead partner: UNIPI

Involved partners: IIT

Work Package: WP4, WP5

T10.2: SOPHIA exploitable results **#7** SoftHand Scaled Version

Description/Contents:

- An anthropomorphic hand with non-rigid palm and a large ٠ envelope for human-like grasp of huge objects
- Hand main dimension \cong 30 cm, finger main dimension \cong 15 cm ٠
- Actuation and electronics can be remotized for reduced payload • and waterproof tasks
- An optional set of soft pads for fingers and palm improve naturalness of interaction and grip capabilities

Background knowledge:

An anthropomorphic hand with heavily underactuated tendon driven mechanism (19 DoFs with only 1 motor/control input)

Involved partners: IIT

Work Package: WP8

Exploitation channel:

- Licensing to companies / spin-offs ٠
- Open source licensing in evaluation

TRL 5

Current status & next steps:

- Prototype designed and tested
- Integration test at @VW Plant Chemnitz ٠
- Ongoing study on soft part grip, mechatronic improvement & integrated sensorization

Back to

overview

MAY 31st, 2024

MAY 31st, 2024

T10.2: SOPHIA exploitable results #8 SuiHapTic

Description/Contents:

- A sensorized and actuated suit for nonverbal human machine communication and posture correction, with wireless communication.
- Sensing part composed of IMUs and sEMG for posture and workload computation.
- Actuation part composed of vibration-, skin stretch-, wire-based haptic devices to provide correction cues and information about the environment to the user.

Background knowledge:

Involved partners: IIT, UT

Lead partner: UNIPI

Work Package: WP4

Haptic devices for human robot communication and tactile cue delivery

Exploitation channel:

TRL 5

- Licensing to companies / spin-offs
- Open source licensing in evaluation

IMK INDUSTRIAL INTELLIGENCE

Back to

High Intensi

Low Intensi

Current status & next steps:

- Final version manufactured and tested
- Integrated with printable electronics and biodegradable casing

T10.2: SOPHIA exploitable results #9 Control architecture for improved HRC

Description/Contents:

- Combining ERG control with a motion planner for certified safe, . fast, real-time robot control in human-robot shared workspaces.
- Modular ROS-based system, leveraging multicore processors and • established ROS resources.
- Open source framework available on GitHub with comprehensive . online documentation and tutorials.

Background knowledge:

Existing methods and codes developed by the partners •

Lead partner: VUB	Exploitation channel:	Current status & next steps:
Involved partners: -	 Open source licenses 	 Concepts have been described and mothods have been implemented
Work Package: WP6		 Software development is finished
	TRL 5	

Back to

overview

T10.2: SOPHIA exploitable results #10 Flexible screen for robot-to-human communication

Description/Contents:

- A flexible screen to improve robot-to-human communication
- Visualize task progress, warnings, and errors
- Co-designed with factory workers
- Developed for UR robot and can be customized to others
- Controlled by Raspberry Pi

Background knowledge:

- Human-robot interaction and collaboration
- Raspberry Pi

Lead partner: VUB

Involved partners: BAuA, VW

Work Package: WP6

MAY 31st, 2024

Exploitation channel:

TRL 7

 Licensing to companies and/or spinoffs

Current status & next steps:

- Hardware and software: validated
- User study: on going

A haptic interface for robot guidance through FT sensor ٠ An additional stereo camera system for robot remote control ٠ without the need for any external tracking system Admittance control and VIO (Visual and Inertial Odometry) ٠ Usable for any fixed based and mobile robots ٠ Controlled by Raspberry Pi and M5stack • **Background knowledge: MOCA-MAN** Interface ٠ VIO / M5Stack and Raspberry Pi Programming ٠ **Exploitation channel:** Lead partner: IIT **Current status & next steps:** Hardware and software: validated Licensing to companies and/or spin-• **Involved partners:** -User study done and completed • offs Ready to be exploited Work Package: WP5-WP7 TRL 7

T10.2: SOPHIA exploitable results

#11 Visuo-haptic interface for connected and remote robot control

Description/Contents:

MAY 31st, 2024

B. WearBots / Exoskeletons

T10.2: SOPHIA exploitable results #12 Exo-Muscle knee assistive device

Description/Contents:

- Semi-rigid chain mechanism
- Deterministic tendon routing & load compensation functionality, based on transformation of chain mechanism to rigid structure
- Elimination of parasitic forces and constraints caused by misalignment due to the translation of knee joint rotation axis
- No direct contact/loading of the knee joint while providing the assistive functionality

Background knowledge:

- Series elastic actuation
- Tendon driven and lightweight

Exploitation channel:

TRL 5

 Licensing to companies and/or spinoffs

Current status & next steps:

- System designed and tested on multiple subjects
- MPC controller developed and tested

MAY 31st, 2024

Lead partner: IIT

Involved partners: -

Work Package: WP8

T10.2: SOPHIA exploitable results #13 Elbow Assistive Device

Description/Contents:

- A novel actuation system based on cam-spool mechanism.
- Cable-driven approach to force transmission.
- Human elbow torque/angle profile.
- Lightweight design.
- Easy donning/doffing with the help of adaptive elements.
- Energy storage material in the actuation system.

Background knowledge:

- Series elastic actuation
- Tendon driven and lightweight

Exploitation channel:

TRL 5

 Licensing to companies and/or spinoffs

MAY 31st, 2024

Lead partner: IIT

Involved partners: -

Work Package: WP8

C. Human Modeling Software & Simulation

T10.2: SOPHIA exploitable results #14 HRI30: An Action Recognition Dataset for Industrial HRI

Description/Contents:

- HRI30 dataset containing 30 categories of industrial-like actions and 2.940 manually annotated clips.
- Tested on multiple action detection approaches and compare it with the HMDB51 and UCF101 public datasets using the best-performing approach.
- Dataset will encourage research towards understanding actions in collaborative industrial scenarios.

Background knowledge:

• State of the art survey of existing industrial activities datasets.

Lead partner: IIT	Exploitation channel:	Current status & next steps:	
Involved partners: IIT	Open source licenses	 Tested, validated and ready to be exploited 	
Work Package: WP5			
	TRL 4		

#15 Open-VICO: Open-Source Gazebo Toolkit for Vision-Based Skeleton Tracking in HRC overview

Description/Contents:

- Open-VICO, an open-source toolkit to integrate virtual human models in Gazebo focusing on vision-based human tracking.
- Open-VICO allows to combine realistic human kinematic models, multicamera vision setups, and human-tracking techniques in the same simulation environment along with numerous robot and sensor models.
- The possibility to incorporate pre-recorded human skeleton motion with Motion Capture systems broadens the landscape of human performance behavioral analysis within Human-Robot Interaction (HRI) settings.

Background knowledge:

- Camera calibration theory
- Open-source skeleton tracking state of the art survey.

Lead partner: IIT	Exploitation channel:	Current status & next steps:	
Involved partners: IIT	Open source licenses	 Tested, validated and ready to be exploited 	
Work Package: WP5			
	TRL 4		

MAY 31st, 2024

T10.2: SOPHIA exploitable results #16 Worker Capture System

Description/Contents:

- Motion Library to improve human tracking and to output joints angles, velocities and accelerations.
- Activity recognition system to recognize activities using the motion library outputs.
- Extensible to various 3D human skeleton extractors (openpose interface is provided).
- Extensible to various sensors (RGBD, motion capture); kinect2 interface, ROS interface, RGBD image streams and Xsens data streams are provided,

Background knowledge:

- RGB-D stream based real time hand gesture recognition system.
- Human kinematic modeling and computation

Lead partner: UM	Exploitation channel:	Current status & next steps:	
Involved partners: Work Package: WP5	 Open-source software framework Extensions for interfacing commercial/non-free systems TRL 4 	 <u>https://gite.lirmm.fr/humar/applications/pipeline_identification</u> Improvements, documentation and debugging are ongoing 	

Input Video

{RGB/RGBD

Motion Capture

System

MAY 31st, 2024

IMK INDUSTRIAL INTELLIGENCE

Body Joint

Positions

Motion Librar

Activity Recognition Process Flow

Video Frames

Body Joint

Positions

Recognized Activity

22

T10.2: SOPHIA exploitable results #17 Human action/activity dataset

Description/Contents:

- Redefined standards to explain/distinguish motion, action and activities.
- Designed a dataset with respect to the new definitions.
- Built an RGB-D activity dataset to test activity recognition solutions and release it as open-source dataset.

Background knowledge:

• State of the art survey of existing action and activity recognition datasets and definitions.

TRL 4

Lead partner: UM

Involved partners:

Work Package: WP5

Back to overview

Data structure

In this table we define fourteen (14) actions to be recognized by the robot.

A	actions	MOTION TYPE	DESCRIPTIONS	Occlusions	Light/Dark
s	itanding	idle	stand straight with your feet	O/F	l/d
в	lend down	Action	reduce the distance between the head and the feet on the ground	O/F	l/d
s	itand up	Action	Increase the distance between the hand and the feet on the ground	O/F	l/d
С	Crouch	Action	Knee outside the chest axis and the foot pelvis distance lower than the knee pelvis distance	O/F	l/d
s	iit	Action	Knee outside the chest axis and the foot pelvis distance higher than the knee pelvis distance	O/F	l/d
S	itop sign	Gesture	right hand on the left shoulder and left hand on the right shoulder	O/F	l/d
C b	come sign with oth hands	Action	Hand-foot angle at 45 degrees from the horizontal and hand- shoulder distance going back and forth	O/F	l/d
C ri	come sign with ight hand	Action	Hand-foot angle at 45 degrees from the horizontal and hand- shoulder distance going back and forth	O/F	l/d
C	Come sign with eft hand	Action	Hand-foot angle at 45 degrees from the horizontal and hand- shoulder distance going back and forth	O/F	l/d
W	Valk	Action	Moving by successive movements of the legs and keeping contact with the floor	O/F	l/d
R	leach with both ands	Action	Simultaneous movements of both hands reaching out and then returning to the body	O/F	l/d
R	leach with left and	Action	left hand reaching out and then returning to the body	O/F	l/d
R	leach with right and	Action	right hands reaching out and then returning to the body	O/F	l/d
H h	lold with both ands	Action	Constant distance between both hands and fixedposition of both hands between the pelvis and the shoulders	O/F	l/d

Exploitation channel:	Current status & next steps:	
 Open dataset for activity recognition 	Methodology has been described	

- Dataset produced.
- Released : July 22.

T10.2: SOPHIA exploitable results #18 Enhanced HRC functions for ema simulation

Description/Contents:

- Import of quick check results to ema, for multiple work sta ٠
- Calculate and show ergonomic and productivity potential ٠ each sub-task of the work process simulation (see figure 1
- Add new cobots and related equipment / SOPHIA technology • to resources library (e.g. UR16e, Robotnix mobile platform
- Update and enhance integrated safety check and HRC repo • with additional standards and key performance indicators

Background knowledge:

ema Software Suite with integrated module for robot/cobot concept planning and assessment developed by IMK

Lead partner: IMK

Involved partners: IIT, DIN to provide data on technology & standards

Work Package: WP2, WP10

Exploitation channel:

Integration in ema Work Designer as a • separate HRC module (commercial software distributed by IMK) TRL 8

	human, 50th percentile, male, german	Calculation and visualizatio	on of ergond	omic/producti	vity potenti
	👻 🔭 🕞 🗊 place housing upper part of	n ASM and screwing	12,3s	30,02% (23,7pt)	
ations	O pick upper part				
ations	O place upper part on lower p	art			
for	O screw upper part with cordle	ess screwdriver			
	To O of place ring bolts on housing	upper part and screwing manually	15,4s	1,76% (0,6pt)	•·· 61,36%
.)	O pick ring bolts				
·	 O place ring bolts on upper pa 	irt			
ogies	O screw 1. ring bolt manually				
-V	O screw 2. ring bolt manually				
1)	Place final assembled gear	box on stack lift	7,8s	1 69,22% (54,5pt)	.** 84,09%
at	O pick gearbox				
	O place gearbox on stack lift		process-	EAWS-points	automation
			unie	persublask	capability

Movement and safety areas

Extended assessment and reporting

Current status & next steps:

- Concepts have been described
- Software development ongoing
- Software module released in 10-2023

IMK INDUSTRIAL INTELLIGENCE

24

potential

utomation

T10.2: SOPHIA exploitable results #19 Real-time human musculoskeletal modelling

Description/Contents:

- Compute real-time muscle-level inner states and joint level kinetics in human movements.
- Use electromyography sensors (EMGs) to get muscle excitations and serve as model-driven inputs.
- New framework of ergonomic evaluation, rapid haptic feedback, and human robot interactions, with considering the muscle level states.

Background knowledge:

• Real-time human musculoskeletal modelling using EMG data incl. user-specific modelling calibration toolbox (CEINMS-RT)

Lead partner: UT

Involved partners: -

Work Package: WP2

Exploitation channel:

An open source software for bio-feedback applications (e.g., rehabilitation) or control of assistive devices or haptic feedback, that can be licensed to third parties or as the main outcome of a spin-off company. TRL 6

Overall takeaways:

- Integration across work packages to enable haptics or assistive systems
- Open-access software release in preparation

MAY 31st, 2024

IMK INDUSTRIAL INTELLIGENCE

25

T10.2: SOPHIA exploitable results #20 Framework for Multi-Modal Physiological Sensing

Description/Contents:

- A Lab Streaming Layer (LSL) package that integrates data from ٠ multi-modal physiological sensors such as the Vicon Motion Capture, Xsens, Cometa EMG, Kistler force plates
- Realtime data visualization and capturing using a 2D interface developed in the Unity engine.
- Recording and saving of synchronized sensor measurements.

Background knowledge:

- Existing codes developed by the partners ٠
- Lab Streaming Layer ٠

Lead partner: VUB

Involved partners: -

Work Package: WP6

Exploitation channel:

TRL: 5

- Open source licenses
- IEEE RAM tutorial publication

UDP/TCP

UDP/TCP

Equipment LSL App

Equipment LSL App

Equipment LSL App

Consumers

LSI

Network

Data Manage

Current status & next steps:

- Concepts have been described
- Software development is finished
- Tutorial is currently under creation

MAY 31st, 2024

T10.2: SOPHIA exploitable results #21 Antropo: social communication interface

Description/Contents:

- An open-source platform to increase anthropomorphism of cobot for robot-to-human communication
- Visual and audio feedbacks are combined with human-like gesture of cobot
- Developed for Franka robot and can be customized to other robots e.g. UR
- Controlled by ROS and Wifi

Background knowledge:

- Human-robot interaction and collaboration
- Arduino, ROS

Lead partner: VUB

Involved partners: -

Work Package: WP6

MAY 31st, 2024

Exploitation channel:

- Open-source hardware and software
- Open access publication

TRL: 5

Current status & next steps:

- Hardware and software: validated
- Open-source platform: registered
- Open access publication: published

D. Methods, Tools & Standards

Description/Contents:

- A software package to monitor and classify the biomechanical risk in the workplace.
- The method consists of objective measures (kinematics, kinetic and electromyographic) of workers during the manual handling activities.
- Using the tool, the company receives online personalized advice on the biomechanical risk.

Background knowledge:

- Biomechanical risk assessment methods.
- Human data analysis.
- Software development.

Lead partner: INAIL Involved partners: UT, VUB

Work Package: WP3

Exploitation channel:

TRL 6

- Eventually software license
- Companies can hire us to do a risk assessment

Current status & next steps:

- Concepts have been described
- Software development is finished
- Tested

MAY 31st, 2024

IMK INDUSTRIAL INTELLIGENCE

29

T10.2: SOPHIA exploitable results #23 Human Ergonomics Database

Description/Contents:

- Human ergonomics database with kinematic and dynamic sensory data.
- The database will be used to train predictive machine-learning algorithms to improve recognition of biomechanical risks.
- The database will be made available as open source.

Background knowledge:

• Existing biomechanical data acquired by the partners during working activities.

Lead partner: INAIL	Exploitation channel:	Current status & next steps:	
Involved partners: IIT, UNIPI Work Package: WP3	 Open Access repository for sharing and retrieving human ergonomic data Publication in high-impact journal 	 Concepts have been described Web domain has been bought Database developed and published 	
	TRL 8	(<u>https://humandatacorpus.org/</u>)	

MAY 31st, 2024

#24 Questionnaire to evaluate the dialog design of HRI systems

Description/Contents:

- Validated detailed questionnaire to assess different aspects of ٠ dialogue design of HRI systems: suitability for the task, selfdescriptiveness, controllability, conformity with user expectations, error tolerance, suitable for individualization, suitability for learning as well as user engagement.
- Items are based on the design guidelines of the ISO 9241-110. ٠

Background knowledge:

Results on human-robot interaction guality from other research projects in this field.

Lead partner: BAuA

Involved partners: -

Work Package: WP1

MAY 31st, 2024

your opinion, to what extent do the following statements apply? The higher the number, the higher Fully agree ment of working with the I think that I would like to use the 1 Suitability for I thought the system was easy to the Task I think that I would need the supp 4.4 1 Suitability for Individualization 3.6 I thought there was too much in 4.3 would learn to use this system very 3 Error Tolerance I found the system very cumb I felt very confident using the sys-3.4 3.7 fore I could get going with this sys-Conformity to Controllability User Expectations 4.0

SOPHI

Socio-Physical Interaction Skills for Cooperative Human-Rob Agile Production (H2020-ICT-871237

Open Access Publication ٠

Exploitation channel:

Current status & next steps:

- Items and guestionnaire developed
- Survey completed with initial sample
- Specific design requirements derived

IMK INDUSTRIAL INTELLIGENCE

TRL: N/A

T10.2: SOPHIA exploitable results #25 Exoskeleton acceptance & suitability assessment

Description/Contents:

- A methodology to assess the acceptability of (commercially available exoskeletons) and its effectiveness in companies.
- The method consists of subjective measures (survey questions) as objective measure (kinematics, (electro-)(psycho-) physiological measures) and workshops in which exoskeletons can be tried on.
- After applying the methodology and analyzing the data, the company receives personalized advice on the implementation and suitability of a selection of exoskeletons.

Background knowledge:

• Existing methods and codes developed by the partners

Lead partner: VUB Involved partners:

Work Package: WP1 & WP9

Exploitation channel:

TRL: N/A

• Provide consultancy services to companies and other organizations

Current status & next steps:

- Methodology has been described
- Service is available for companies

Back to

overview

MAY 31st, 2024

IMK INDUSTRIAL INTELLIGENCE

32_

Work Package: WP10	TRL: N/A	completed	
Involved partners: INAIL, IIT, BAuA, UP, VUB, UM, IMK	• publication of CWA 17938 (CEN Workshop Agreement)	 Active liaison with ISO TC 159/SC3/WG4 publication of CWA 17938 on biomechanical risk assessment 	
Lead partner: DIN	Exploitation channel:	Current status & next steps:	
Background knowledge:			
		CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Litviania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.	
 Human-robot collaboration 		This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.	
 Digital Human modelling 		The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the technical content of this CEN Workshon Agreement or nossible conflicts with standards or levislation.	
 Communication among wearable 	s	This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of which is indicated in the foreword of this Workshop Agreement.	
 Biomechanical risk assessment 		assessment	
Possible topics identified in SOPHIA pro	oject:	Guideline for introducing and implementing real-time	
 CWA is an option to promote the proje 	ect results to the market	English version	
based on the principle of consensus or	majority decision	ICS 13.100; 13.180	

CEN

WORKSHOP

AGREEMENT

Description/Contents:

MAY 31st, 2024

Establish a common ground, determine rules or guidelines, ٠ forwaity, and and an lay defining nearly increases and in

T10.2: SOPHIA exploitable results

#26 Standardisation document(s) on HRC and biomech. assessment

IMK INDUSTRIAL INTELLIGENCE

CWA 17938

November 2023

33

Socio-Physical Interaction Skills for Cooperative Human-Robot Systems in Agile Production

For more information about SOPHIA project, please visit: <u>https://project-sophia.eu/</u>

H2020-ICT2019-2 (GA 871237)

Project Innovation Manager:

Prof. Dr. Lars Fritzsche CEO, imk Industrial Intelligence GmbH Mobile: +49 (0)162 250 03 47 lars.fritzsche@imk-automotive.de